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1. Introduction: The Orbit Philosophy and 3 Orbit Pictures

Normally, I like to begin a talk with a sort of where-we-are-in-the-big-picture schpeel. However, in the
colloquium just a couple weeks ago, Hadi Salmasian gave a nice overview of the relevance of the orbit
philosophy to the long standing and central problem of parameterizing the unitary dual. So here I’ll limit
myself to a couple of ancillary remarks.

Consider the group SL (2,R). If we take the standard basis for its Lie algebra g

X =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
and identify, as we may, g with its dual g∗ by use of the Killing form

B (Z,Z ′) =
1
2
trace (ZZ ′)

then the coadjoint orbits of SL (2,R) fall into three basic classes; according to whether the Casimir function

B (Z,Z) = h2 + xy

is positive, negative or zero.(Here Z ≡ x ∗X + h ∗H + y ∗ Y .) The nature of these orbits becomes a little
clear if we adopt a basis for which B is diagonal, setting

Z0 = X − Y

Z2 = X + Y

Z3 = H

we find
B (Z,Z) = −z2

0 + z2
2 + z2

3

That is, the invariant bilinear form on g looks like the Lorentz metric on R2,1. And, in fact, the orbit
structure of g looks like that of (2+1)-dimensional Minkowki spacetime; thinking of z0 as the “temperal
coordinate” and z1 and z2 as the “spatial coordinates”. The three orbit classes are

• B (Z,Z) > 0. The hyperbolic orbits.
• B (Z,Z) < 0. The elliptic orbits
• B (Z,Z) = 0 The nilpotent orbits.
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For the first two orbit types there are more or less uniform methods of attaching unitary representations;
respectively, (unitary) parabolic induction and cohomological parabolic induction The point of the current
talk is to outline a uniform method for attaching unitary representations to a family of spherical nilpotent
orbits.

Now in fact there are many ways of attaching a representation to an orbit. But they fall into two basic
classes, and within each class there are several more-or-less canonical instances.

• Quantization Methods: by which I mean, the direct construction of π from geometric data
attached to an orbit.

– parabolic induction for hyperbolic orbits
– cohomological parabolic induction for elliptic orbits
– ??? for nilpotent orbits (no uniform construction is known)

• Dequantization Methods: by which I mean the identification of a particular orbit via some limit,
contraction, or grading process.

– The characteristic variety of the Ann (π) ⊂ U (g), a GC-orbit in NC ⊂ g∗C
– The wave front set of π, a GR orbit in gR = NR ⊂ g∗R
– The associated variety of π, a KC-orbit in Np ⊂ (gC/kC) ≈ pC

Now actually for the problem of parameterizing the unitary dual, only the quantization methods are directly
relevant. In fact, the dequantization methods produce only nilpotent orbits, which of course is only a finite
set. (Thus, as far as the parameterization of the unitary dual goes dequantization methods provide only a
crude partitioning of the unitary dual into a finite number of subsets.1

However, since it is the nilpotent orbits that stand as the last to succumb to a quantization scheme,
and because in the cases where one can construct representations from a nilpotent orbits, dequantization
methods take you invariably back to the same nilpotent orbit, it not so unnatural to think of a quantization
method for nilpotent orbits as begining in any one of the three (tightly related) nilpotent orbits. In this
talk, I shall propose a uniform method for attaching unitary representations to certain families of spherical
nilpotent orbits in pC. A little more explicitly, I shall propose an explicit program for analyzing the signature
characters and reducibility of certain degenerate principal series representations corresponding to the families
of spherical nilpotent KC-orbits in pC that arise from sequences of strongly orthogonal noncompact weights.

2. Sahi’s Construction

I’ll begin by reviewing S. Sahi’s construction2 of certain families of unipotent representations occurring the
simple Lie groups associated to simple real Jordan algebras; as this provides the basic template for the
methodology I am proposing.

2.1. Apparatus. Sahi begins with a simple Lie group G with Lie algebra g, maximal compact subgroup K,
and Cartan involution θ for which G has a parabolic subgroup P = MAN with the following two properties

(i) the nilradical N is abelian;
(ii) P is conjugate to θN .

For such groups the Lie algebra n of G has the structure of simple real Jordan algebra and, in fact, conversely,
given a simple real Jordan algebra n, a Lie group G with the properties (i) and (ii) above arises naturally
as the conformal group of n via a standard construction due to Koecher and Tits.

1Moreover, refinements such as characteristic cycles, do little to improve the lack of injectivity inherent to dequantization

methods
2S. Sahi, Jordan algebras and degenerate principal series, J. reine angew. Math 462 (1995), 1-18.
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In this setting Sahi considers a continuous family of spherical principal series representations

I (s) = IndG
MAN (1⊗ esν ⊗ 1) , s ∈ R

where eν is the character of A corresponding to, on the one hand, the half sum of the positive restricted
roots w.r.t. a = Lie (A), or on the other hand, the determinant of action of L = MA on n = Lie (N).
The unipotent representations of interest occur as certain unitarizable constituents that “pop out” of the
generically irreducible representations I (s) are certain discrete values of the parameter s (i.e., at certain
“reduction points”).

We point out that the hypotheses (i) and (ii) above, besides landing us squarely in the Jordan algebra
setting have two crucial representation theoretical consequences for the spherical principal representations
I (s). For (i) guarantees

(i′) the K-types of I (s) have multiplicity one.

a simplification that’s essential for Sahi’s analysis; and (ii) guarantees that

(ii′) each irreducible constituent of I (s) carries an invariant Hermitian form,

which, of course, is a prerequisite for unitarity.

However, before describing Sahi’s methodology I should point out three other salient features of Sahi’s
setup.

(iii) If {e1, . . . , en} is a complete set of primitive idempotent in n, thought of a Jordan algebra, then the
{ei} thought of as elements of g are strongly orthogonal. Moreover, to each primitive idempotent
ei there is a corresponding TDS (three-dimensional sl2 subalgebra) si, and [si, sj ] = 0 if i 6= j.

(iv) For each non-negative integer k, I (r + 2k) has an irreducible finite-dimensional spherical subrepre-
sentation. (Here r is just the ρ-shift associated to normalized parabolic induction.)

(v) The norm function on the associated Jordan algebra gives rise to certain invariant differential
operators Dm that intertwines I (m) with its dual I (−m). (These are the Kostant-Sahi Capelli
operators.)

2.2. Methodology.

2.2.1. The Hermitian Form on K-types. Let t0 be a maximal compact subalgebra of l ∩ k and let t1 be a
maximal compact subalgebra of the orthogonal complement of l ∩ k in k, so that t = t0 + t1 is a Cartan
subalgebra of k. Let n = dim t1. Let Σ = Σ (t1, k) be the restricted root system of k with respect to t1.
For ease of exposition, we describe how Sahi’s analysis works out in the case when Σ is of Cartan type Cn.
(The other possibilities are Σ = An−1 and Dn, and for these cases the methodology is the same, up to slight
discrepancies in the formulas.) Sahi fixes a positive system for Σ and adopts a basis {γ1, . . . , γn} for t∗1 so
that the simple roots of Σ are

1
2

(γ1 − γ2) ,
1
2

(γ2 − γ3) , . . . ,
1
2

(γn−1 − γn) , γn

and it turns out that each γi is the restriction to t1 of an extremal weight of the representation of K on p,
and that (the highest weights of) the K-types of I (s) are

S = {µ = a1γ1 + · · ·+ anγn ∈ spanZ (γ1, . . . , γn) | a1 ≥ a2 ≥ · · · ≥ an ≥ 0} .

Let us write V for the (g,K)-module of I (s) (i.e. the subspace of K-finite vectors), and denote by Vµ

the (unique) irreducible summand of V corresponding to the K-type µ ∈ S. We denote by 〈·, ·〉s the
g-invariant Hermitian form on V inherited from I (s) (unique up to scalar, but dependent upon s), and
by 〈·, ·〉K the (unique up to scalar) positive-definite Hermitian form arising from the realization of V as
L2 (K/ (L ∩K))K−finite Since V is multiplicity free, the restriction of 〈·, ·〉s to any particular K-type Vα
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must coincide with the restriction of 〈·, ·〉K to Vα up to an overall scalar factor. And since Vα ⊥ Vβ if α 6= β,
we can write

〈·, ·〉s =
⊕
α∈S

εα (s) 〈·, ·〉K |Vα

In this light, a unitarizable submodule of I (s) will manifest itself as a g-invariant set of K-types
for which the scalar factors εα (s) are either all positive or all negative.

2.2.2. The local transition functions cα,i (s) and dα,i (s). To get a handle on the relative signs K-type weight
functions εα (s) and indeed to identify g-invariant subsets of K-types, Sahi examines certain “transition
functions” between neighboring K-types.3 Suppose a K-types α is connected to a different K-type β by an
element X ∈ p. A little more explicitly, suppose there is a vα ∈ Vα, vβ ∈ Vβ and elements X,X ∈ p such
that

vβ = πs (X) vα , vα = πs

(
X

)
vβ .

Then the g-invariance of 〈·, ·〉s requires

〈πx (X) vα, vβ〉s = −
〈
vα, πs

(
X

)
vβ

〉
s

or

(*) εβ (s) 〈πs (X) vα, vβ〉K = −εα (s)
〈
vα, π

(
X

)
vβ

〉
K

Now note that we can, without loss of generality, take both vα and vβ are normalized so that

〈vα, vα〉K = 1 = 〈vβ , vβ〉K
and suppose further that the 〈·, ·〉K-orthogonal projections of πs (X) vα onto vβ is cα̇,β,X (s) vβ , and similarly
the orthogonal projection of πs

(
X

)
vβ onto vα is dα,β,X (s) vα. Then condition (*) becomes

εβ (s) cα,β ,X (s) = −εα (s) dα,β,X (s)

From this it is clear that the occurrence of “signature flips” in the 〈·., ·〉s would be revealed by getting a
handle on all the transition functions between neighboring K-types.

Well, unfortunately, finding all the functions ca,β,X (s) and dα,β,X (x) is way, way too much to hope for.
N.B., that even after fixing the K-types α and β, there will be many possible choices of vα ∈ Vα, vβ ∈ Vβ

and X,X ∈ p. Moveover, without some additional organizing principles, the transition functions cannot be
used to identify submodules for which the sign of the local signatures are constant. For even if you knew
all the transition functions between Vα and Vβ are zero, you would not be cannot conclude that Vα and Vβ

can not be connected by an element of U (g) via an alternate (albeit non-direct); e.g. as in

Vα 6� Vβ

↘ ↗
Vγ

We shall see below that Sahi’s setup permits the exploitation of a small, tractable family of transitions
functions to detect both reduciblility and unitarity.

Observation 2.1. Let Vα be a K-type in V . Then the K-types Vβ that are directly reachable from Vα via
g have β = α± γi for some i ∈ {1, . . . , n}.

The K-types of V that are directly reachable from Vα must also be K-types in

p⊗ Vα .

3Here I use the term “transition functions” by analogy with the notion of transition matrix in quantum mechanics; not by

analogy with differential geometry.
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As is well known,4 the possible highest weights in such a tensor product must be of the form α+ µ with µ
a weight of p. The weights (really, the restricted weights of p, but no matter ...) of p

{±γi | i = 1, . . . , n} ∪
{

1
2

(±γi ± γj) | 1 ≤ i < j ≤ n

}
However, it is clear that since the α ∈ S must be integral linear combinations of the γi, only highest weights
of the form α± γi can be in both V and p⊗ Vα. �

Theorem 2.2 (Kumar). Let g finite-dimensional semisimple Lie algebra, endowed with a chosen Cartan
algebra h, positive system ∆+ (h, g) and Weyl group W (h, g). Let λ, µ be any pair of dominant weights for
∆+ (h, g) and consider the tensor product Vλ ⊗ Vµ of the corresponding finite-dimensional represenations.
Then

• Whenever w ∈W (h, g) is such that λ+wµ is dominant, Vλ⊗Vµ has an irreducible subrepresentation
(Vλ ⊗ Vµ)λ+wµ of highest weight λ + wµ. Moreover, this subrepresentation occurs in Vλ ⊗ Vµ with
multiplicity exactly one..

• If vλ is a highest weight vector for Vλ and vwµ is a weight vector in the wµ weight space of Vµ, then
the vector vλ ⊗ vwµ has a non-zero projection onto the highest weight space of (Vλ ⊗ Vµ)λ+wµ.

From the fact that the {γ1, . . . , γn} are all extremal weights of the representation of K on p, we can now
infer

Observation 2.3. For any α ∈ S, let Pα : V → Vα denote the corresponding K-equivariant orthogonal
projection of V onto the K-type with highest weight α. Let vα, vβ be the (unique up to scalars) highest
weight vectors of, respectively, two different K-typesVα, Vβ in V . Then Vα is directly connected to Vβ; i.e.,
there exists an element X ∈ g such that ad (X)Vα ∩ Vβ 6= {0}, if and only if there is an extremal weight γi

of p such that β = α+ γi and
Pβπs (Xi) vα = cα,i (s) vβ 6= 0

where 0 6= Xi ∈ pγi
.

Suppose now for each K-type Vλ, λ ∈ S, we choose a highest weight vector vλ normalized so that

〈vλ, vλ〉K = 1 .

Then, by the preceding observations, if a K-type Vα is (directly) connected to a K-type Vβ , we must have
β = α ± γi for some i ∈ {1, . . . , n}. In fact, we can assume (by if necessary relabeling α and β) that
β = α+ γi, and that

Pβ (πs (Xi) vα) = cα,i (s) vβ

Pα

(
πs

(
Xi

)
vβ

)
= dα,i (s) vα

In fact, we can refine the choice of Xi ∈ pγi and the normalizations of vα and vβ so that cα,i (s), dα,i (s) are
real and the criteria (*) becomes

cα,i (s)
dα,i (s)

=
εβ (s)
εα (s)

In summary, as far as the signature character of V goes, it suffices to understand the transition functions
between highest weight vectors of neighboring K-types.

2.2.3. Consequences of the realization I (s) = IndG
MAN (1⊗ eνs ⊗ 1). It follows from the fact that V

is the underlying space of the realization of a spherical parabolically induced representation in the compact
picture, that πs (X) is an affine function of s for any X ∈ g. This implies, in particular, that the transition

4See, for example, Execise 13, on page 111 in Knapp’s book Representation Theory of Semisimple Lie Groups.
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functions cα,i (s) and dα,i (s) , are affine functions of the inducing parameter s. Thus, for example, we can
write

(1) cα,i (s) = Aα,i (Bα,i − s/2)

Another consequence of the fact that V is the underlying space of the compact picture realization of a
spherical induced representation is the following identity

πt+t′ (X) (vu) = (πt (X)u) v + u (πt+r (X)) v

This identity leads to the following lemma.

Lemma 2.4. For i = 1, . . . , n, let µi = γ1 + · · ·+ γi. Suppose α and α+ γi are in S. If i ≤ j, then

(2) cα+µj ,i (t+ 2) = kicα,i (t)

where ki is a non-zero constant (independent of t).

2.2.4. Consequences of the Capelli Identity. In an earlier paper Kostant and Sahi found a Capelli
operator D intertwining the representations I (2) and I (−2), and established that on a K-type Vα,, D acts
by the scalar

(**) D|Vα
=

n∏
j=1

(
aj + rj −

1
2

) (
aj + rj +

1
2

)
· 1Vα

if α = a1γ1 + · · ·+ anγn. Applying the intertwining property of D to the current setting

π−2 (Xi)Dvα = Dπ2 (Xi) vα

and applying (**), Sahi obtains(
ai + ri −

1
2

) (
ai + ri +

1
2

)
cα,i (−2) =

(
ai + ri +

1
2

) (
ai + ri +

3
2

)
cα,i (2)

Assuming cα,i (s) is not identically zero, (1) and (3) imply

(3) Bα,i = ai + ri +
1
2

From (1), (3), one can now, nearly, deduce the following lemma and corollary.

Lemma 2.5. Suppose α and α + γi are n S, with α =
∑n

i=1 aiγi. If the transition function cα,i (s) is not
identically zero, then cα,i (s) is a non-zero multiple of

(
ai + ri + 1

2 (1− s)
)
.

Corollary 2.6. Suppose α and α + γi are n S, with α =
∑n

i=1 aiγi and the transition function cα,i (s) is
not identically zero. If we normalize vα and vα+γi

so that

cα,i (s) = (ai + ri + (1− s) /2)

Then

dα,i (s) = (ai + ri + (1 + s) /2)
〈vα+γi

, vα+γi
〉K

〈vα, vα〉K

2.2.5. Consequences of (iii) and (iv) and the formulas for cα,i (s) and dα,i (s). The explicit determination
of the transition functions is thus reduced to verifying that the transitions functions cα,i (s) can not be
identically zero. This fact Sahi proves as follows

• The fact that I (2) has a irreducible spherical subrepresentation F1 with K-types 0 and

µi = γ1 + · · · γi , 1 ≤ i ≤ n

implies that the transitions functions

for 1 ≤ i ≤ n , cµi−1,i (s) 6≡ 0 as a function of s .

Otherwise, F1 itself would be reducible.
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• Lemma 2.4 above, the strong orthogonality of the Xi and some diagram chasing then permits Sahi
to infer from the non-triviality of the cµi−1,i (s) that

If α and α+ γi are in S, then cα,,i (s) 6≡ 0 as a function of s

and so we can replace Corollary 4.3 with

Theorem 2.7. Suppose α =
∑n

i=1 aiγi and both α and α + γi are n S. Then, we can normalize vα and
vα+γi

so that
cα,i (s) = (ai + ri + (1− s) /2)

and

dα,i (s) = (ai + ri + (1 + s) /2)
〈vα+γi

, vα+γi
〉K

〈vα, vα〉K
.

3. Generalization to Arbitrary Semisimple Groups

Ostensibly, Sahi’s construction is highly dependent on the Jordan algebra setting from which it arose. In
particular, circumstances (i) and (ii) effectively restrict G to the class of groups associated with real semisim-
ple Jordan algebras. Circumstance (iv) also seems very much a relic of the Jordan algebra setting. The
thesis and whole point of this talk is that the real underpinnings of Sahi’s construction; i.e. circumstances
(i′), (ii′), (iii), (iv) and even (v) can be replicated for any connected semisimple group G via the notion of
sequences of non-compact roots I introduced in a talk last spring.

Let me recall that business. For simplicity, let me assume that G is not of hermitian symmetric type. Fix a
maximal compact subgroup K, Cartan involution θ, and Cartan decomposition g = k+p of the complexified
Lie algebra of G. The representation of K on p is irreducible. Let γ1 be the highest weight of p with respect
to some Cartan algebra t of k and some choice of positive system ∆+ (t, k). Starting with γ1 we construct a
sequence Γ = {γ1, . . . , γn} of strongly orthogonal noncompact weights according to the following inductive
prescription:

• γi lies in the Weyl orbit of γ1

• γ1 + · · ·+ γi is a dominant weight with respect to ∆+ (t, k)
• Xi ∈ pγi is strongly orthogonal to every Xj ∈ pj , j < i. (This means that neither γi +γj nor γi−γj

is a t-weight of g.)

Now let Γ = {γ1, . . . , γn} be such a (maximal) sequence. Then in each (1-dimensional) weight space pγi

we can choose a representative nilpotent noncompact element xi, and construct an associated normal triple
{xi, hi, yi}; that is to say additional elements hi ∈ t, yi ∈ p−γi

such that

[hi, xi] = 2xi , [hi, yi] = −2yi , [xi, yi] = hi

In fact, we can choose {xi, hi, yi} so that

yi = xi

hi ∈ itR

and we do so because this becomes useful later on. Morever, because the xi are all strongly orthogonal the
corresponding sl2 subalgebras of g

si = spanC (xi, hi, yi)

will all commute with each other. Let

t1 = spanC (h1, . . . , hn)

and let t0 be the orthogonal complement of t1 in t.
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Theorem 3.1 (B). Let
Yi = y1 + · · ·+ yi

Then the representation of KC carried by the regular functions on the closure of KC · Yi is multiplicity free
and its K-types µ are exactly

Si = {µ = a1γ1 + · · ·+ aiγi ∈ spanZ (γ1, . . . , γi) | a1 ≥ a2 ≥ · · · ≥ ai ≥ 0}

if i < n. If i = n then one has

Sn = {µ = a1γ1 + · · ·+ anγn ∈ spanZ (γ1, . . . , γi) | a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an}

if the restricted root system Σ (t1, k) is of type An−1 or

Sn = {µ = a1γ1 + · · ·+ anγn ∈ spanZ (γ1, . . . , γi) | a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an| ≥ 0}

if the restricted root system is of type Dn, or

Sn = {µ = a1γ1 + · · ·+ anγn ∈ spanZ (γ1, . . . , γi) | a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an ≥ 0}

if Σ (t1, k) 6= An−1, Dn.

3.1. Cayley transform. From here on we restrict our attention to the “quasi-principal” TDS {X,H, Y } =
{Xn,Hn, Yn} and the big orbit KC · Y . Set

X̃ =
1
2

(X + Y − iH)

H̃ = −i (X − Y )

Ỹ =
1
2

(X + Y + iH)

then
{
X̃, H̃, Ỹ

}
is a Cayley triple in gR, that is to say, a standard triple in gR such that

θX̃ = −Ỹ

θỸ = −X

θH̃ = −H̃

3.2. Spherical induced representation. Since H̃ is a semisimple element of pR, we can use it to construct

a certain parabolic subgroup P = MAN of G as well as a certain character of A. This construction goes as
follows.

We now define

n = direct sum of positive eigenspaces of ad
(
H̃

)
in gR ,

l = 0-eigenspace of ad
(
H̃

)
in gR ,

a = Z (l) ∩ pR ,

m = orthogonal complement of a in l

and then set

M = ZK (a) exp (m) ,

A = exp (a) ,

N = exp (n) .

Then P = MAN is a (Langlands decomposition of a) parabolic subgroup of G. Moreover, it happens that

spanR

(
h̃1, . . . , h̃n

)
⊆ a .



9

Now let ν be the element of the real dual space a∗ of a such that

ν (h) = B0

(
H̃, h

)
∀ h ∈ a0 ,

where B0 (·, ·) is the Killing form on gR restricted to a.

Lemma 3.2. The K-types of
I (s) = IndG

MAN (1⊗ eνs ⊗ 1)
coincide with those of C

[
KC · Y

]
. In particular, if V is the realization of I (s) in the compact picture then

V =
⊕
µ∈S

Vµ

with each K-type occuring with multiplicity one and in the Z-span of the weights γi ∈ Γ.

Proof. This is essentially a verification that the algebraic Frobenious reciprocity argument used to determine
the K-types in C

[
KC · Y

]
is compatible with the analytic Frobenious reciprocity argument used to identify

the K-types of I (s). The key to this is the observation that m is preserved by the Cayley transform.

� This lemma provides us with a replication of circumstance (i′).

To replicate circumstance (ii′), we consider

w = exp
(π

2

(
X̃ − Ỹ

))
∈ K .

It then happens that

Lemma 3.3. With P = MAN , ν ∈ a∗ and w ∈ NK (a) defined as above, we have

• w ∈ NK (a) ;
• wPw−1 = P , the parabolic opposite to P
• Ad∗ (w) ν = −ν

I now quote a fundamental result of Knapp and Zuckerman

Theorem 3.4. Suppose

w ∈ NK (a) , wPw−1 = P , Ad∗ (w) ν = −ν
then the Langlands quotient of IndG

MAN (1⊗ eν ⊗ 1) carries a non-degenerate hermitian form.

Since for generic s spherically induced representations are irreducible, Lemma , Theorem and a Jantzen
filtration argument gives us a invariant non-degenertate hermitian form on each irreducible submodule of

I (s) = IndG
MAN (1⊗ esν ⊗ 1) .

� We thus arrive at a replication of circumstance (ii′).

� As for circumstance (iii), well, the existence of the strongly orthogonal non-compact root vectors is the
foundation of our whole setup.

We’re now up to circumstance (iv), the appearance of finite-dimensional subrepresentations within I(s) for
certain s.

Lemma 3.5. Let r ∈ 1
2N be defined by

1
2

∑
α∈Σ(t1,g)

mαα = r (γ1 + · · ·+ γn)

Then, for any integer k, I (2k + r) contains a irreducible finite-dimensional spherical representation of g
of highest weight k (γ1 + · · ·+ γn).
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Proof. In Helgason, Groups and Geometric Analysis, one can find the following statement.5

Theorem 3.6. Let π be an irreducible finite-dimensional representation of G. Then the following statements
are equivalent.

(i) π has a non-zero K-fixed vector.
(ii) The highest weight ν of π vanishes on t0 ⊂ m, and the restriction of ν to a is such that

〈ν, β〉
〈β, β〉

∈ Z for every restricted root β ∈ Z

It is easy to see that the weights kµn = k (γ1 + · · ·+ γn) satisfy the conditions (ii), and so there exists
a finite-dimensional spherical representation of highest weight kµn. Moreover, if φν is the highest weight
vector for such a representation πk and φK is the corresponding spherical vector, it is easy to see that the
matrix element functions

φ (g) = 〈π (g)φν , φK〉
transform as the irreducible finite-dimensional representation contragredient to π, and moreover

φ (g) ∈ I (2k + r) .

These last two statements follow from easy calculations that are carried out very explicitly in Knapp’s book
(Representation Theory of Semisimple Groups, §9.6)

� We thus have a replication of circumstance (iv).

Lastly, we turn to task of replicating circumstance (v) in our generalized setting. Again our goal is not so
much to replicate the Jordan algebraic Capelli operator per se, but rather to find a representation theoretical
construct that provides the same functionality. And here again, once we figure out what we’re looking for,
we find the problem has been solved several times over in the literature.

So what are we looking for? Well, ostensibly, the Kostant-Sahi Capelli operators are born from the Jordan
norm on n. This form provides a homogeneous polynomial on n which by duality leads to a certain constant
coefficient operator on C∞ (n). Interpreting the latter as the representation space for I (s), this operator
becomes a certain L-quasi-invariant differential operator intertwining I (1) with I (−1). Cayley transforming
to the compact picture, yields a K-invariant operator on K/M that continues to intertwine I (1) and I (−1).
Then via the Harish-Chandra homomorphism Kostant and Sahi obtain the formula for the eigenvalue of D
on a K-type Vα. That seems a lot to ask for.

Not so. First of all, from an old paper of Kostant (Verma modules, and the existence of quasi-invariant differ-
ential operators) there is a natural duality (corresponding to differentiation functions in IndG

MAN (1⊗ eν ⊗ 1)
at the identity), that reduces the problem of finding differential operators intertwining two spherical princi-
pal series representations to the problem of finding intertwining maps between generalized Verma modules
of scalar type. The latter gadgets are defined as follows.

Definition 3.7. Let q be a parabolic subalgebra of g and E a 1-dimensional representation of p. The
corresponding generalized Verma module of scalar type is

U (g)⊗U(p) E .

Suppose now that E and E′ are two 1-dimensional q-modules, having non-zero elements e and e′ of weight
λ and λ′ with respect to the a-part of q. (q = m + a + n is the usual Langlands decomposition). Then every
g-homomorphism

φ : U (g)⊗U(p) E
′ → U (g)⊗U(p) E

5pg. 535.
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is determined by the image φ (1⊗ e′). Via the Poincare-Birkhoff-Witt theorem we can write

φ (1⊗ e′) = u⊗ e

for some u ∈ U (n). Since E and E′ are 1-dimensional and m is semisimple, it follows that u ∈ U (n)m.
Morever, since φ must be in particular an a-homomorphism, u must have weight λ′ − λ. Hence, u must be
an l-semi-invariant in U (n). Moreover, u has to be annihilated by n since 1⊗ e′ is annihilated by n. Finally,
just as in the case of ordinary Verma modules (in fact, it follows from this case since every generalized
Verma module is a quotient of an ordinary Verma module), U (g)⊗U(p) E

′ and U (g)⊗U(p) E have to have
the same infinitesimal character, and this leads to the stipulation that there exist a Weyl group element
such that

(***) w (λ+ ρ) = λ′ + ρ

How are we going to find such a u? Easy. Remember our finite-dimensional subrepresentation Fµ ⊂ I (1).
It is easy to see that in the noncompact picture this correspond to a certain g-invariant set of polynomials
on n. Moreover, Fµ is spherical, and its highest weight vector ψ is m-invariant and l-semi-invariant.It follows
that the image of ψ in U (n) via the symmeterizer map will have all the properties we need for u except
possibly (***). But it’s just as easy to check that (***) holds as well - using the same Weyl group element
w we used to establish the existence of the hermitian form on I (s).

There is a even easier way to get one’s hands on a suitable intertwining operator. Consider the monomial

ψ (y) = y1 · · · yn

It is trivial to check that

• ψ in M -invariant
• ψ has weight −µn = γ1 + · · · γn

• viewed as a polynomial in S (g), ψ is annihilated by n.

and so ψ is the lowest weight vector of an irreducible finite-dimensional spherical representation of g.

�′ The highest weight vector ψ should provide the same functionality as the Kostant-Sahi Capelli operators,
and so should provide a replication of circumstance (v).

Remark 3.8. The gap between “should” and “will” in the above lies in the fact that I still need to detail the
transport of ψ to a K-invariant differential operator D on K/ (K ∩ L) and then determine the eigenvalues
D on the K-types in V .
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Appendix A. Closure Relations for Spherical Nilpotent Orbits of Classical Real Linear
Groups

To indicate exactly which spherical orbits are constructible by our sequences of strongly orthogonal non-
compact weights, we display below the closure relations for the spherical orbits of classical real linear Lie
groups; or rather those cases for which we’ve identified a nice pattern (the closure diagrams of SU (p, q) and
SO (p, q) get rather complicated as p and q increase). The double lines in the diagram indicate the simple
chains of spherical nilpotent orbits closures corresponding to sequences of strongly orthogonal noncompact
weights (cf. Remark 2.1.3.). In the Hermitian symmetric cases we indicate both the chains lying in p+ and
those lying in p−. Our notation for the orbits is somewhere between that of King and Djokovic. Briefly,
following King, we indicate particular orbits by expressions of the form (±n1)m1(±n2)m2 · · · (±nk)mk , where
a factor of the form (±ni)mi indicates the occurance of a signed a row of alternating ’+’ and ’-’ signs, of
length ni, beginning with a ± sign, and occuring with multiplicity mi. However, Djokovic’s algorithm makes
use of unsigned rows (actually, unsigned “genes”) rather than rows that are more commonly represented as
even signed rows; we indicate such an unsigned row of length n occuring with multiplicity m by a factor of
the form (n)m. Thus, for example,

(+3)2(2)(+1)2(−1) ∼

+ − +
+ − +

+
+
−

.

A.1. SL (n, R).

OI
(2)[n/2]

 (JJJJJJJJJ

JJJJJJJJJ
OII

(2)[n/2]

v~ ttttttttt

ttttttttt

O(2)[n/2]−1(1)2

��
O(2)[n/2]−2(1)4

��
...

��
O(2)(1)n−2

��
O(1)n

n even

O(2)[n/2]

��
O(2)[n/2]−1(1)2

��
O(2)[n/2]−2(1)4

��
...

��
O(2)(1)n−2

��
O(1)n

n odd
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A.2. SU (2, q).

O(−3)2(−1)q−4

++WWWWWWWWWWWWWWWWWWW

ssggggggggggggggggggg

O(−3)(−2)(−1)q−3

��

++WWWWWWWWWWWWWWWWWWW
O(−3)(+2)(−1)q−3

ssggggggggggggggggggg

��

O(−3)(+1)(−1)q−1

��

O(+3)(−1)q−1

wwppppppppppp

O(−2)2(−1)q−2ww

#+NNNNNNNNNN

NNNNNNNNNN
O(+2)(−2)(−1)q−2

wwppppppppppp

''NNNNNNNNNNN
O(+2)2(−1)q−2''

s{ pppppppppp

pppppppppp

O(−2)(+1)(−1)q−1ww

#+NNNNNNNNNN

NNNNNNNNNN
O(+2)(+1)(−1)q−1

s{ pppppppppp

pppppppppp

O(+1)2(−1)q

A.3. SL (n, H).

O(2)[n/2]

��
O(2)[n/2]−1(1)2

��
...

��
O(2)(1)n−2

��
O(1)n

n even

O(2)[n/2](1)

��
O(2)[n/2]−1(1)3

��
...

��
O(2)(1)n−2

��
O(1)n

n odd

A.4. SO (2, p) ; p > 4.

O(−3)2(−1)p−4

��
OI

(+3)(−1)p−1

!)KKKKKKKKK

KKKKKKKKK
O(−3)(+1)(−1)p−2

xxqqqqqqqqqqq

&&MMMMMMMMMMM
OII

(+3)(−1)p−1

u} sssssssss

sssssssss

OI
(+2)(−2)(−1)p−2

"*NNNNNNNNNN

NNNNNNNNNN
OII

(+2)(−2)(−1)p−2

t| pppppppppp

pppppppppp

O(+1)2(−1)p
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A.5. SO∗ (2n).

O[ n
2 ],0

�"
<<

<<
<<

<<
<<

<<
O[ n

2 ]−1,1

��~~
~~

~~
~

  A
AA

AA
AA

AA
· · · · · · · · · · · · · · · O1,[ n

2 ]−1

��@
@@

@@
@@

~~}}
}}

}}
}}

}
O0,[ n

2 ]

|� ��
��

��

��
��

��

O[ n
2 ]−1,0

�$

· · · O0,[ n
2 ]−1

z�

O(3)(1)n−3

��
O2,0

�!
;;

;;
;;

;;
;;

;;
O1,1

����
��

��
�

��=
==

==
==

O0,2

}� ��
��

��

��
��

��

O1,0

�"
==

==
==

=

==
==

==
=

O0,1

|� ��
��

��
�

��
��

��
�

O0,0

where

Or,s = O(+2)r(−2)s(1)n−2r−2s

A.6. Sp (n, R).

On,0

� 
::

::
::

::
::

::
On−1,1

����
��

��
�

��

· · · · · · · · · O1,n−1

��>
>>

>>
>>

��

O0,n

~� ��
��

��

��
��

��

On−1,0

�!

· · · · · · O0,n−1

}�

O1,1

��		
		

		

��5
55

55
5

O1,0

��
55

55
55

55
55

55
O0,1

�� 		
		
		

		
		
		

O0,0

where

Or,s = O(+2)r(−2)s(+1)n−r−s(−1)n−r−s
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A.7. Sp(p, q) p ≤ q.

O(+2)p

��
O(+2)p−1(+1)(−1)

��
O(+3)(+2)(+1)p−3(−1)q−2

�� ))RRRRRRRRRRRRR
O(+2)3(+1)p−3(−1)q−3

��

O(−3)(+2)(+1)p−2(−1)q−3

uulllllllllllll

��
O(+3)(+1)p−2(−1)q−1

))RRRRRRRRRRRRR
O(+2)2(+1)p−2(−1)q−2

��

O(−3)(+1)p−1(−1)q−2

uulllllllllllll

O(+2)(+1)p−1(−1)q−1

��
O(+1)p(−1)q


